Quasisymmetric and unipotent tensor categories
نویسندگان
چکیده
منابع مشابه
Fuzzy projective modules and tensor products in fuzzy module categories
Let $R$ be a commutative ring. We write $mbox{Hom}(mu_A, nu_B)$ for the set of all fuzzy $R$-morphisms from $mu_A$ to $nu_B$, where $mu_A$ and $nu_B$ are two fuzzy $R$-modules. We make$mbox{Hom}(mu_A, nu_B)$ into fuzzy $R$-module by redefining a function $alpha:mbox{Hom}(mu_A, nu_B)longrightarrow [0,1]$. We study the properties of the functor $mbox{Hom}(mu_A,-):FRmbox{-Mod}rightarrow FRmbox{-Mo...
متن کاملTensor Categories
These are lecture notes for the course 18.769 “Tensor categories”, taught by P. Etingof at MIT in the spring of 2009. In these notes we will assume that the reader is familiar with the basic theory of categories and functors; a detailed discussion of this theory can be found in the book [ML]. We will also assume the basics of the theory of abelian categories (for a more detailed treatment see t...
متن کاملCohomology and Tensor Categories
In this research announcement we propose the notion of a supercategory as an alternative approach to supermathematics. We show that this setting is rich to carry out many of the basic constructions of supermathematics. We also prove generalizations of a number of results in equivariant cohomology, including the Chern-Weil theorem for an arbitrary rigid Lie algebra object. For a quadratic Lie al...
متن کاملCluster Structures for 2-calabi-yau Categories and Unipotent Groups
We investigate cluster tilting objects (and subcategories) in triangulated 2-Calabi-Yau categories and related categories. In particular we construct a new class of such categories related to preprojective algebras of non Dynkin quivers associated with elements in the Coxeter group. This class of 2-Calabi-Yau categories contains the cluster categories and the stable categories of preprojective ...
متن کاملTensor products and *-autonomous categories
The main use of ∗-autonomous categories is in the semantic study of Linear Logic. For this reason, it is thus natural to look for a ∗-autonomous category of locally convex topological vector spaces (tvs). On one hand, Linear Logic inherits its semantics from Linear Algebra, and it is thus natural to build models of Linear Logic from vector spaces [3,5,6,4]. On the other hand, denotational seman...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Research Letters
سال: 2008
ISSN: 1073-2780,1945-001X
DOI: 10.4310/mrl.2008.v15.n5.a3